
  J 
an Peters’ laboratory is tightly 
crammed with equipment – hard-
ly surprising, as the center of the 
room is occupied by a ping-pong 
table. The first thing one sees        

 on entering is a heavy industrial 
robot – an articulated arm, as tall as a 
man and as thick as a sumo wrestler’s 
thigh. A second robot arm is suspend-
ed from the ceiling next to the ping-
pong table, and appears lighter and 
more dexterous.

Peters and his four students have 
pushed their desks over to the win-
dows. Unlike the robots, neither the 
scientists nor their computers require 
much space. Peters is teaching his ro-
bots forehand and backhand, games 
of skill and how to grasp unfamiliar 
objects – all things that are still diffi-
cult to teach a machine, despite the 
fact that programmable robots have 
been around for half a century.

There is no question that modern 
robots can perform a lot of tasks. They 
weld auto body parts together with 
millimeter precision a thousand times 
a day without getting tired. Robot 
dogs play football, flick the ball into 

the goal with their nose and roll yap-
ping onto their backs when they 
score. Humanoid robots move forward 
on two legs, offer their hand and say 
“Hi.” And yet the robot world is still 
as rigid and inflexible as the stone cir-
cle at Stonehenge.

IMPROVED FLEXIBILITY AND 
APPROPRIATE REACTIONS

Factory robots repeat the same move-
ment a thousand times a day, no more, 
no less. If a component rolls out of po-
sition, they can only report their switch 
into failure mode. To prevent them 
from injuring anyone, they are locked 
away behind bars and light barriers. 
Football dogs lose all sense of direction 
when the barriers are removed from 
the playing field. And electromechani-
cal humanoids stumble when steered 
to walk over a fleecy velour carpet.

The fact that today’s robots are 
still dumb is demonstrated by their 
inability to adapt to the uncertainty 
in human environments. If you affec-
tionately slap your humanoid com-
panion on the shoulder, you can ex-

pect to be knocked to the floor, as the 
robot is incapable of processing an 
unexpected slap.

Greater flexibility and the ability to 
react appropriately and at the right 
time – this is what robots still have to 
learn, and precisely what Jan Peters is 
teaching his machines. Peters is a com-
puter scientist as well as a mechanical 
and an electrical engineer. He heads a 
research group on robot learning in 
the Empirical Inference Department at 
the Max Planck Institute for Biological 
Cybernetics in Tübingen. Next door, 
his colleagues are busy developing the-
ories and calculation specifications for 
statistical learning. Others employ 
these methods in brain-computer in-
terfaces, computational photography 
and bioinformatics.

Jan Peters is the only one here 
whose laboratory contains massive ro-
bots mounted on the wall or suspend-
ed from the ceiling on concrete beams 
as thick as tree trunks. Whatever Peters 
and his students – computer scientists 
and engineers – come up with is sent 
straight to the machine and converted 
into movement. The Tübingen-based 

Robots That Learn!
In the world of science fiction, robots are intelligent and adaptive, but reality differs significantly. 

Robot programming is expensive manual labor, and the resulting programs are inflexible. A key 

step in making current robots more like their sci-fi counterparts requires endowing them with the 

capability to learn how to react appropriately and at the right time. Jan Peters is trying to teach 

exactly this skill to his machines. The computer scientist and mechanical and electrical engineer 

heads up a research group at the Max Planck Institute of Biological Cybernetics in Tübingen.
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No child’s play for a robot: In order to catch the ball 
in the cup (blue), the arm first imitates the movement 
demonstrated by the scientists in Tübingen, and 
subsequently improves the behavior by trial and error.
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programs read addresses in fractions of 
a second. They have learned what the 
letter “A” looks like, and can assess 
very accurately whether an illegible let-
ter is actually an “A” or some other let-
ter. Peters combines the two disciplines 
to create a teachable robot. “Around 
5,000 scientists worldwide are working 
on machine learning, and 6,000 or so 
more are engaged in research on robot-
ics,” says Peters. “But only six research 
groups are really combining both – and 
we’re one of them.”

A ROBOT LEARNS HOW TO CATCH 

Why does machine learning not trans-
late directly into robot learning? The 
answer becomes obvious when one 
watches a robot learning to play, for 
instance, ball-in-the-cup. In this game 
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scientists are trying to teach robots 
how to learn. The basic idea is to teach 
the machines how to accomplish com-
plex tasks by learning flexible motor 
primitives instead of employing manu-
ally programmed movements.

JOINING FORCES: ROBOTICS 
AND MACHINE LEARNING 

Their approach is inspired by human 
motor learning: babies master the art 
of grasping things and, over time, 
learn to change their grip according 
to need. Grabbing quickly, taking 
hold of something firmly or gently – 
eventually, grown-ups master more 
than 60 types of grasps. But how to 
make a machine created from cable 
and steel as smart as an infant? The 
scientists in Tübingen have chosen to 

bridge two disciplines that have co-
existed for years: robotics and ma-
chine learning. In Peters’ lab, the two 
approaches join forces.

Conventional robotics develops 
machines that are customized for pre-
cisely specified tasks, such as robots in 
an auto factory. The programmer de-
termines a desired trajectory with high 
accuracy, as well as how much force is 
needed to accomplish the task and 
how it should move its joints. The re-
sult is a mechanical servant that strict-
ly carries out the exact same orders. 
Machine learning is less concerned 
with heavy robot hardware and is lo-
cated in the more virtual realm of 
“data clouds.”

For example, computers learn to 
identify specific patterns. In mail dis-
tribution centers, character recognition 

Katharina Mülling guides the robot’s arm, showing it how to hit the ball with the 
ping-pong paddle (left). Bowden cables on the robot’s joints allow the arm to be made 
compliant, so that physical contact with it is quite safe (right).
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 » The Tübingen-based scientists are trying to teach robots how to learn. The basic idea 

is to teach the machines how to accomplish complex tasks by learning flexible motor 

primitives instead of employing manually programmed movements.
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of skill, a string with a ball attached 
hangs from a small wooden cup in the 
robot’s hand, and the ball is tossed 
into the cup by swinging it carefully 
to and fro.

Trying to teach a robot to play ball-
in-the-cup through off-the-shelf ma-
chine learning methods would test the 
patience of a saint! Approaching the 
problem without domain insights from 
scratch requires testing thousands of 
variants, altering arm acceleration, 
joint rotation and direction of move-
ment. “With this type of robot arm, 
there are so many permutations that it 
would take forever to achieve the de-
sired results and catch the ball,” says 
Jan Peters. Programming the task as in 
industrial robotics is no alternative due 
to the complexity and uncertainty of 
the swing movement. To start with, 

the ball swings gently to and fro, be-
fore being spun around and flipped 
into the cup. The to and fro motion is 
very jerky and uneven. “It is precisely 
these complex movements that are so 
difficult to program using traditional 
methods,” explains Peters.

LEARNING FROM IMITATION AND 
SUBSEQUENT TRIAL AND ERROR

He has therefore developed a robot 
learning system made up of several 
components. The learning and retriev-
al of movements is broken down into 
several easily digestible stages, using 
unusual methods such as imitation. 
First, you have to spell out to the robot 
what it is actually supposed to do. The 
quickest way to achieve this is to dem-
onstrate the movement to the ma-

The robot is already doing well competing 
against a ball gun. However, before it can play 
with a human partner, it needs more practice. 
Katharina Mülling holds on to the emergency 
off-switch while Jan Peters and Jens Kober 
monitor its training.



chine, in the same way that a tennis 
coach takes a pupil by the hand to prac-
tice his or her forehand.

To play ball-in-the-cup, Peters’ stu-
dent Katharina Mülling guided the 
arm of WAM, the laboratory robot, 
swinging the ball into the cup. This 
demonstration gave WAM a rough idea 

of the sequence of movements. It was 
then followed by a second step: self-
improvement. Just like a human learn-
ing tennis, WAM had to perfect the 
movement in order to flip the ball into 
the cup all by itself. In the language of 
robot experts, this step is known as re-
inforcement learning. “Ultimately, the 

robot’s goal is to reduce the distance 
between the ball and the cup,” ex-
plains Jan Peters. “If the ball ends up 
in the cup, the distance is minimal.”

The experiment was a success: 
Once Katharina Mülling had shown 
WAM what to do, the robot needed 
only 45 attempts to learn a successful 
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 » First you have to spell out to the robot what it is actually supposed to do. The quickest 

way to achieve this is to demonstrate the movement to the machine, in the same way 

that a tennis coach takes a pupil by the hand to practice his or her forehand.

A test of endurance for any waiter: Jan Peters and Duy Nguyen-Tuong nudge the robot’s arm 
to teach it to compensate for their prodding, and to balance the bottle on the tray.



movement. After around 90 attempts, 
it now sinks the ball every time. Ac-
cording to Max Planck research scien-
tist Peters, this is no mean feat. “We’ve 
had visitors here who were totally frus-
trated after trying unsuccessfully for 
much longer.”

MAKING THE ROBOT 
COMPLIANT

The robot skill learning system in Tü-
bingen goes even one step further. 
First, it stores the learned movements, 
the motor primitives. These are man-
aged by a software module known as 
the supervisor. The idea is that, accord-
ing to the situation, the supervisor 
gives the command to perform specif-
ic motor primitives. In most cases, the 
motor primitives must be adjusted to 
the new situation, or a series of learned 
motor primitives can be combined in 
order to react correctly in a matter of 
seconds – in the same way that a ten-
nis player constantly has to vary his or 
her forehand moves: arm outstretched, 
volleying or diving for the ball. “Hu-
mans frequently experience situations 
in which they suddenly have to adapt 
a learned behavior,” says Peters. “The 
first time they strap on a pair of inline 
skates, for example.”

In the meantime, WAM no longer 
just plays ball-in-the-cup, but also 
ping-pong. It still practices using the 
reinforcement learning strategy. Jan 
Peters has screwed a ball gun to the 
ping-pong table, which delivers the 
balls more uniformly than a human 
could. WAM parries the shots easily. 
However, it cannot yet hold its own 
against a human opponent. After all, 
ping-pong is an incredibly fast sport, 
and also an extremely complex one. 
If a ball smashes onto the table or is 

whacked to the edge of it, WAM has 
to move its arm incredibly fast and 
position it correctly within a fraction 
of a second in order to hit it.

Unlike conventional robots, WAM 
robots are fitted with flexible Bowden 
cables, like those used in automobile 
brakes, instead of rigid electromechan-
ical gears. These enable a WAM to gen-
tly follow trajectories and even give 
way when it collides with its human 
training partner – a key criterion in in-
teraction between technology and hu-
mans. “If a Bowden cable breaks, we 
can easily spend a few hours repairing 

it and fiddling around with screws. 
But such a compliant robot has huge 
advantages,” says Peters.

MOTOR PRIMITIVES PROVIDE 
REAL TIME FLEXIBILITY

The scientists and WAM are currently 
learning what forces are needed and 
how fast the joints need to be moved 
for an action-packed game of ping-
pong, how quickly the Bowden cables 
react and how to steer the arm correct-
ly. They are still working on it. One 
thing is certain – the motor skills learn-
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A matter of concentration: Manuel Gomez Rodriguez practices steering the robot arm using 
his brainwaves. Electrodes channel the commands straight from his brain.

MATERIAL & TECHNOLOGY_Biological Cybernetics



ciple of rewarding when referring to 
reinforcement learning, as used by 
Pavlov in his dog experiments. A suc-
cessful attempt is rewarded with food. 
“The robot learns how to become a 
‘good robot,’” Peters explains.

Depending on the robot’s goal, it 
can then adjust its motor primitives. 
Accordingly, the stored sequence of 
movements varies based on the goal 
function. Peters’ student Jens Kober 
initially experimented with this virtu-
ally, teaching his computer to hit spe-
cific segments on an imaginary board 
with a dart. A few weeks ago he was 
in Japan and transmitted his com-
mands to the laboratory robot. “Ad-
mittedly, it sometimes missed, because 
the mechanics of the robot hand 
didn’t always cooperate. However, 
some darts landed exactly in the right 
corner,” says Kober.

A supervisor, a motor primitive ar-
chive and goal functions are just 
some components of the robot learn-
ing system. Several other factors 
come into play before the command 
to move is given. 

However, it is clear that all com-
ponents interact to achieve the move-
ment, and this part is achieved by 
distributing the task in manageable 
chunks to these different modules. 

FLEXIBILITY IS NOT 
A REQUIREMENT

Service robots already exist that can 
be taught to move by means of in-
struction. However, they generally 
act only as a third hand, lifting and 
holding heavy sheet metal or engine 
parts. Ultra-fast flexibility is hardly a 
requirement.
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ing system will break a ping-pong 
game down into a series of motor 
primitives. This part seems to be the 
preferred solution in order to obtain 
real time flexibility. Any other elabo-
rate calculations would take too long. 
A clean backhand also requires the ro-
bot to hit the ball quickly. WAM uses 
several cameras to track the ball’s po-
sition. Fast-acting image processing 
software is therefore a must.

A REWARD FOR A “GOOD ROBOT”

Six working groups worldwide make 
for a manageable scientific communi-
ty. Jan Peters and his students know 
the other research scientists in the US 
and Japan well. Peters worked for a 
long time at the University of South-
ern California in Los Angeles, where 
he earned his Ph.D. He uses the prin- P
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Mathematical instructions: Katharina Mülling and Jan Peters derive equations in order to teach the robot new tricks, 
while Jens Kober and Oliver Kroemer discuss the movements the robot needs to master in order to water flowers.
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GLOSSARY

Empirical inference
The Biological Cybernetics Department 
founded in 2001 at the Max Planck Insti-
tute of the same name researches the 
physical laws underlying empirical 
data. Scientists develop algorithms and 
apply them to a wide range of prob-
lems, such as computer vision, brain-
computer interfaces, bioinformatics … 
and robot learning.

Humanoid robot
The design of this type of robot mimics 
the human body. It normally has a head 
and two arms and legs. Movement se-
quences and joint positions are also 
based on those of humans.

“If service robots are actually going to 
help us with housework or nursing 
care in the future, they have to be able 
to do it properly and adjust quickly to 
changes in environmental condi-
tions,” explains Peters. There appears 
to be a big demand for these service 
robots. Globally, five million iRobot 
vacuum cleaners are already whirring 
around people’s homes. But here 
again, flexibility is not a requirement. 
Now and then, cleaning robots will 
buzz through the living room for a 
half hour before gliding back to their 
charging stations. WAM would proba-
bly just give them a tired smile.           

Machine learning
An artificial system, in this case a robot, does 
not memorize all examples, but rather gradu-
ally acquires the ability to generalize. The sys-
tem recognizes physical laws in the learning 
data and is eventually also able to evaluate 
unknown data or react to new situations.

Pavlov’s dog
Russian Nobel Prize winner Ivan Petrovich 
Pavlov (1849 to 1936) conducted the first em-
pirical experiments to show the effect of clas-
sic conditioning: he observed the connection 
between salivation and digestion. The own-
er’s footsteps alone sufficed to trigger saliva-
tion in kenneled dogs, even when no food 
was being offered.

www.robot-learning.de
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